TalkRL: The Reinforcement Learning Podcast

Von: Robin Ranjit Singh Chauhan
  • Inhaltsangabe

  • TalkRL podcast is All Reinforcement Learning, All the Time. In-depth interviews with brilliant people at the forefront of RL research and practice. Guests from places like MILA, OpenAI, MIT, DeepMind, Berkeley, Amii, Oxford, Google Research, Brown, Waymo, Caltech, and Vector Institute. Hosted by Robin Ranjit Singh Chauhan.
    © 2024 Robin Ranjit Singh Chauhan
    Mehr anzeigen Weniger anzeigen
activate_Holiday_promo_in_buybox_DT_T2
  • RLC 2024 - Posters and Hallways 5
    Sep 20 2024

    Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA.

    Featuring:

    • 0:01 David Radke of the Chicago Blackhawks NHL on RL for professional sports
    • 0:56 Abhishek Naik from the National Research Council on Continuing RL and Average Reward
    • 2:42 Daphne Cornelisse from NYU on Autonomous Driving and Multi-Agent RL
    • 08:58 Shray Bansal from Georgia Tech on Cognitive Bias for Human AI Ad hoc Teamwork
    • 10:21 Claas Voelcker from University of Toronto on Can we hop in general?
    • 11:23 Brent Venable from The Institute for Human & Machine Cognition on Cooperative information dissemination


    Mehr anzeigen Weniger anzeigen
    13 Min.
  • RLC 2024 - Posters and Hallways 4
    Sep 19 2024

    Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA.

    Featuring:

    • 0:01 David Abel from DeepMind on 3 Dogmas of RL
    • 0:55 Kevin Wang from Brown on learning variable depth search for MCTS
    • 2:17 Ashwin Kumar from Washington University in St Louis on fairness in resource allocation
    • 3:36 Prabhat Nagarajan from UAlberta on Value overestimation
    Mehr anzeigen Weniger anzeigen
    5 Min.
  • RLC 2024 - Posters and Hallways 3
    Sep 18 2024

    Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA.

    Featuring:

    • 0:01 Kris De Asis from Openmind on Time Discretization
    • 2:23 Anna Hakhverdyan from U of Alberta on Online Hyperparameters
    • 3:59 Dilip Arumugam from Princeton on Information Theory and Exploration
    • 5:04 Micah Carroll from UC Berkeley on Changing preferences and AI alignment


    Mehr anzeigen Weniger anzeigen
    7 Min.

Das sagen andere Hörer zu TalkRL: The Reinforcement Learning Podcast

Nur Nutzer, die den Titel gehört haben, können Rezensionen abgeben.
Gesamt
  • 5 out of 5 stars
  • 5 Sterne
    1
  • 4 Sterne
    0
  • 3 Sterne
    0
  • 2 Sterne
    0
  • 1 Stern
    0
Sprecher
  • 5 out of 5 stars
  • 5 Sterne
    1
  • 4 Sterne
    0
  • 3 Sterne
    0
  • 2 Sterne
    0
  • 1 Stern
    0
Geschichte
  • 5 out of 5 stars
  • 5 Sterne
    1
  • 4 Sterne
    0
  • 3 Sterne
    0
  • 2 Sterne
    0
  • 1 Stern
    0

Rezensionen - mit Klick auf einen der beiden Reiter können Sie die Quelle der Rezensionen bestimmen.