Causal Inference Titelbild

Causal Inference

MIT Press Essential Knowledge Series

Reinhören
0,00 € - kostenlos hören
Prime Logo Bist du Amazon Prime-Mitglied?
Audible 60 Tage kostenlos testen
Aktiviere das kostenlose Probeabo mit der Option, monatlich flexibel zu pausieren oder zu kündigen.
Nach dem Probemonat bekommst du eine vielfältige Auswahl an Hörbüchern, Kinderhörspielen und Original Podcasts für 9,95 € pro Monat.
Wähle monatlich einen Titel aus dem Gesamtkatalog und behalte ihn.

Causal Inference

Von: Paul r. Rosenbaum
Gesprochen von: Chris Monteiro
0,00 € - kostenlos hören

9,95 € pro Monat nach 30 Tagen. Monatlich kündbar.

Für 14,95 € kaufen

Für 14,95 € kaufen

Über diesen Titel

A nontechnical guide to the basic ideas of modern causal inference, with illustrations from health, the economy, and public policy.

Which of two antiviral drugs does the most to save people infected with Ebola virus? Does a daily glass of wine prolong or shorten life? Does winning the lottery make you more or less likely to go bankrupt? How do you identify genes that cause disease? Do unions raise wages? Do some antibiotics have lethal side effects? Does the Earned Income Tax Credit help people enter the workforce?

Causal Inference provides a brief and nontechnical introduction to randomized experiments, propensity scores, natural experiments, instrumental variables, sensitivity analysis, and quasi-experimental devices. Ideas are illustrated with examples from medicine, epidemiology, economics and business, the social sciences, and public policy.

©2023 Massachusetts Institute of Technology (P)2023 Ascent Audio
Mathematik

Diese Titel könnten dich auch interessieren

Fertility Technology Titelbild
Cryptography Titelbild
Deep Learning Titelbild
Co-Intelligence Titelbild
The Book of Why Titelbild
AI Engineering Titelbild
Why Machines Learn Titelbild
A Mind for Numbers Titelbild
The Beginning of Infinity Titelbild
Never Split the Difference Titelbild
Alle Sterne
Am relevantesten
the author is well known in the statistical literature as an expert in observational studies, where causality is a key question. this is a very accessible introduction to the potential outcomes framework of causal inference (another popular framework is Pearl's approach based on causal diagrams and do-calculus).

to actually use the techniques, however, you'll probably have to deal with more technical literature. but the big ideas are here.

it is also somewhat difficult to listen to, when the reader reads the formulas. I guess this book is better suited for reading it yourself on paper.

very good introduction to causal inference

Ein Fehler ist aufgetreten. Bitte versuche es in ein paar Minuten noch einmal.